Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 256: 116277, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613934

RESUMEN

The field of biosensing would significantly benefit from a disruptive technology enabling flexible manufacturing of uniform electrodes. Inkjet printing holds promise for this, although realizing full electrode manufacturing with this technology remains challenging. We introduce a nitrogen-doped carboxylated graphene ink (NGA-ink) compatible with commercially available printing technologies. The water-based and additive-free NGA-ink was utilized to produce fully inkjet-printed electrodes (IPEs), which demonstrated successful electrochemical detection of the important neurotransmitter dopamine. The cost-effectiveness of NGA-ink combined with a total cost per electrode of $0.10 renders it a practical solution for customized electrode manufacturing. Furthermore, the high carboxyl group content of NGA-ink (13 wt%) presents opportunities for biomolecule immobilization, paving the way for the development of advanced state-of-the-art biosensors. This study highlights the potential of NGA inkjet-printed electrodes in revolutionizing sensor technology, offering an affordable, scalable alternative to conventional electrochemical systems.


Asunto(s)
Técnicas Biosensibles , Dopamina , Técnicas Electroquímicas , Grafito , Tinta , Impresión , Técnicas Biosensibles/instrumentación , Grafito/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Dopamina/análisis , Electrodos , Diseño de Equipo , Nitrógeno/química , Humanos
2.
Molecules ; 28(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37570787

RESUMEN

A novel experimental protocol based on a reverse micellar method is presented for the synthesis of graphene oxide (GO)-based hybrids with spin crossover nanoparticles (SCO NPs) of the 1D iron(II) coordination polymer with the formula [Fe(NH2trz)3](Br2). By introducing different quantities of 0.5% and 1.0% of GO (according to iron(II)) into the aqueous phase, two hybrids, NP4 and NP5, were synthesized, respectively. The morphological homogeneity of the NPs on the surface of the GO flakes is greatly improved in comparison to the pristine [Fe(NH2trz)3](Br2) NPs. From the magnetic point of view and at a low magnetic sweep rate of 1 K/min, a two-step hysteretic behavior is observed for NP4 and NP5, where the onset of the low-temperature second step appeared at 40% and 30% of the HS fraction, respectively. For faster sweep rates of 5-10 K/min, the two steps from the cooling branch are progressively smeared out, and the critical temperatures observed are T1/2↑ = 343 K and T1/2↓ = 288 K, with a thermal width of 55 K for both NP4 and NP5. A Raman laser power-assisted protocol was used to monitor the thermal tolerance of the hybrids, while XPS analysis revealed electronic interactions between the SCO NPs and the GO flakes.

3.
Elife ; 112022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36537881

RESUMEN

Ancient genome sequencing technologies now provide the opportunity to study natural selection in unprecedented detail. Rather than making inferences from indirect footprints left by selection in present-day genomes, we can directly observe whether a given allele was present or absent in a particular region of the world at almost any period of human history within the last 10,000 years. Methods for studying selection using ancient genomes often rely on partitioning individuals into discrete time periods or regions of the world. However, a complete understanding of natural selection requires more nuanced statistical methods which can explicitly model allele frequency changes in a continuum across space and time. Here we introduce a method for inferring the spread of a beneficial allele across a landscape using two-dimensional partial differential equations. Unlike previous approaches, our framework can handle time-stamped ancient samples, as well as genotype likelihoods and pseudohaploid sequences from low-coverage genomes. We apply the method to a panel of published ancient West Eurasian genomes to produce dynamic maps showcasing the inferred spread of candidate beneficial alleles over time and space. We also provide estimates for the strength of selection and diffusion rate for each of these alleles. Finally, we highlight possible avenues of improvement for accurately tracing the spread of beneficial alleles in more complex scenarios.


Analyzing the genomes of our ancient ancestors can reveal how certain traits spread through the human population over the course of evolution. Mutations that make individuals better equipped to survive their environment are more likely to be passed on to the next generation and become more common. For example, a genetic variant that enables adult people to digest sugars in dairy products has become more common in humans over time. Yet evolution does not only happen across time: it transverses space as well. Modeling the geographic spread of such genetic mutations is challenging using existing methods. To overcome this, Muktupavela et al. developed a new computational method that uses modern and ancient human genomes to study the evolution of specific genetic variants across space and time. The tool can determine where certain variants first emerged, how quickly they spread across geographic areas, and how rapidly they became prevalent in human populations. Muktupavela et al. applied their new method, which was based on a previously published framework, to track the spread of two common genetic variations that have previously been reported to be subject to natural selection: one that allows adult humans to digest dairy products, and another associated with skin pigmentation. They found that the mutation that enabled dairy consumption originated around what is now southwestern Russia or eastern Ukraine. The variation then spread westward, becoming increasingly more common over the course of the Holocene. The mutation related to skin pigmentation emerged further south than the dairy-related variation, and then also spread westward. Massive human migrations during the Neolithic and Bronze Age eras may have helped disperse both variants. The model developed by Muktupavela et al. could help scientists track the geographic spread of other genetic variants in human populations, as well as provide new insights into how humans adapt to changing environmental conditions. Incorporating major events into the model, like mass migrations or glacial retreats, may lead to even more insights.


Asunto(s)
Selección Genética , Humanos , Alelos , Frecuencia de los Genes
4.
Science ; 372(6542)2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33858989

RESUMEN

Bones and teeth are important sources of Pleistocene hominin DNA, but are rarely recovered at archaeological sites. Mitochondrial DNA (mtDNA) has been retrieved from cave sediments but provides limited value for studying population relationships. We therefore developed methods for the enrichment and analysis of nuclear DNA from sediments and applied them to cave deposits in western Europe and southern Siberia dated to between 200,000 and 50,000 years ago. We detected a population replacement in northern Spain about 100,000 years ago, which was accompanied by a turnover of mtDNA. We also identified two radiation events in Neanderthal history during the early part of the Late Pleistocene. Our work lays the ground for studying the population history of ancient hominins from trace amounts of nuclear DNA in sediments.


Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/genética , Hombre de Neandertal/clasificación , Hombre de Neandertal/genética , Animales , Cuevas/química , ADN Mitocondrial/análisis , ADN Mitocondrial/aislamiento & purificación , Sedimentos Geológicos/química , Filogenia , Población/genética , Análisis de Secuencia de ADN , Siberia , España
5.
Small ; 17(16): e2006477, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33783134

RESUMEN

Single-atom catalysts (SACs) have aroused great attention due to their high atom efficiency and unprecedented catalytic properties. A remaining challenge is to anchor the single atoms individually on support materials via strong interactions. Herein, single atom Co sites have been developed on functionalized graphene by taking advantage of the strong interaction between Co2+ ions and the nitrile group of cyanographene. The potential of the material, which is named G(CN)Co, as a SAC is demonstrated using the electrocatalytic hydrazine oxidation reaction (HzOR). The material exhibits excellent catalytic activity for HzOR, driving the reaction with low overpotential and high current density while remaining stable during long reaction times. Thus, this material can be a promising alternative to conventional noble metal-based catalysts that are currently widely used in HzOR-based fuel cells. Density functional theory calculations of the reaction mechanism over the material reveal that the Co(II) sites on G(CN)Co can efficiently interact with hydrazine molecules and promote the NH bond-dissociation steps involved in the HzOR.

6.
Small ; 17(16): e2006478, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33739590

RESUMEN

With increasing concerns for global warming, the solar-driven photocatalytic reduction of CO2 into chemical fuels like methanol is a propitious route to enrich energy supplies, with concomitant reduction of the abundant CO2  stockpiles. Herein, a novel single atom-confinement and a strategy are reported toward single ruthenium atoms dispersion over porous carbon nitride surface. Ruthenium single atom character is well confirmed by EXAFS absorption spectrometric analysis unveiling the cationic coordination environment for the single-atomic-site ruthenium center, that is formed by Ru-N/C intercalation in the first coordination shell, attaining synergism in N-Ru-N connection and interfacial carrier transfer. From time resolved fluorescence decay spectra, the average carrier lifetime of the RuSA-mC3 N4 system is found to be higher compared to m-C3 N4 ; the fact uncovering the crucial role of single Ru atoms in promoting photocatalytic reaction system. A high yield of methanol (1500 µmol g-1 cat. after 6 h of the reaction) using water as an electron donor and the reusability of the developed catalyst without any significant change in the efficiency represent the superior aspects for its potential application in real industrial technologies.

7.
ACS Nano ; 15(2): 3349-3358, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33464824

RESUMEN

Sorption technologies, enabling removal of heavy metals, play a pivotal role in meeting the global demands for unrestricted access to drinking water. Standard sorption technologies suffer from limited efficiency related to the weak sorbent-metal interaction. Further challenges include the development of technologies enabling smart metal recovery and sorbent regeneration. To this end, a densely functionalized graphene, with 33% by mass content of carboxyl groups, linked through direct C-C bonds (graphene acid, GA) represents a previously unexplored solution to this challenge. GA revealed excellent efficiency for removal of highly toxic metals, such as Cd2+ and Pb2+. Due to its selective chemistry, GA can bind heavy metals with high affinity, even at concentrations of 1 mg L-1 and in the presence of competing ions of natural drinking water, and reduce them down to drinking water allowance levels of a few µg L-1. This is not only due to carboxyl groups but also due to the stable radical centers of the GA structure, enabling metal ion-radical interactions, as proved by EPR, XPS, and density functional theory calculations. GA offers full structural integrity during the highly acidic and basic treatment, which is exploited for noble metal recovery (Ga3+, In3+, Pd2+) and sorbent regeneration. Owing to these attributes, GA represents a fully reusable metal sorbent, applicable also in electrochemical energy technologies, as illustrated with a GA/Pt catalyst derived from Pt4+-contaminated water.

8.
Chem Sci ; 13(1): 111-117, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35059158

RESUMEN

A general cobalt-catalyzed N-alkylation of amines with alcohols by borrowing hydrogen methodology to prepare different kinds of amines is reported. The optimal catalyst for this transformation is prepared by pyrolysis of a specific templated material, which is generated in situ by mixing cobalt salts, nitrogen ligands and colloidal silica, and subsequent removal of silica. Applying this novel Co-nanoparticle-based material, >100 primary, secondary, and tertiary amines including N-methylamines and selected drug molecules were conveniently prepared starting from inexpensive and easily accessible alcohols and amines or ammonia.

9.
J Hazard Mater ; 405: 124665, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33301974

RESUMEN

In a number of laboratory studies, sulfidated nanoscale zero-valent iron (S-nZVI) particles showed increased reactivity, reducing capacity, and electron selectivity for Cr(VI) removal from contaminated waters. In our study, core-shell S-nZVI particles were successfully injected into an aquifer contaminated with Cr(VI) at a former chrome plating facility. S-nZVI migrated towards monitoring wells, resulting in a rapid decrease in Cr(VI) and Crtot concentrations and a long-term decrease in groundwater redox potential observed even 35 m downstream the nearest injection well. Characterization of materials recovered from the injection and monitoring wells confirmed the presence of nZVI particles, together with iron corrosion products. Chromium was identified on the surface of the recovered iron particles as Cr(III), and its occurrence was linked to the formation of insoluble chromium-iron (oxyhydr)oxides such as CrxFe(1-x)(OH)3(s). Injected S-nZVI particles formed aggregates, which were slowly transformed into iron (oxyhydr)oxides and carbonate green rust. Elevated contents of Fe0 were detected even several months after injection, indicating good S-nZVI longevity. The sulfide shell was gradually disintegrated and/or dissolved. Geochemical modelling confirmed the overall stability of the resulting Cr(III) phase at field conditions. This study demonstrates the applicability of S-nZVI for the remediation of a Cr(VI)-contaminated aquifer.

10.
Adv Mater ; 33(4): e2004560, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33274794

RESUMEN

In this work, the covalent attachment of an amine functionalized metal-organic framework (UiO-66-NH2  = Zr6 O4 (OH)4 (bdc-NH2 )6 ; bdc-NH2  = 2-amino-1,4-benzenedicarboxylate) (UiO-Universitetet i Oslo) to the basal-plane of carboxylate functionalized graphene (graphene acid = GA) via amide bonds is reported. The resultant GA@UiO-66-NH2 hybrid displayed a large specific surface area, hierarchical pores and an interconnected conductive network. The electrochemical characterizations demonstrated that the hybrid GA@UiO-66-NH2 acts as an effective charge storing material with a capacitance of up to 651 F g-1 , significantly higher than traditional graphene-based materials. The results suggest that the amide linkage plays a key role in the formation of a π-conjugated structure, which facilitates charge transfer and consequently offers good capacitance and cycling stability. Furthermore, to realize the practical feasibility, an asymmetric supercapacitor using a GA@UiO-66-NH2 positive electrode with Ti3 C2 TX MXene as the opposing electrode has been constructed. The cell is able to deliver a power density of up to 16 kW kg-1 and an energy density of up to 73 Wh kg-1 , which are comparable to several commercial devices such as Pb-acid and Ni/MH batteries. Under an intermediate level of loading, the device retained 88% of its initial capacitance after 10 000 cycles.

11.
Science ; 369(6511): 1653-1656, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32973032

RESUMEN

Ancient DNA has provided new insights into many aspects of human history. However, we lack comprehensive studies of the Y chromosomes of Denisovans and Neanderthals because the majority of specimens that have been sequenced to sufficient coverage are female. Sequencing Y chromosomes from two Denisovans and three Neanderthals shows that the Y chromosomes of Denisovans split around 700 thousand years ago from a lineage shared by Neanderthals and modern human Y chromosomes, which diverged from each other around 370 thousand years ago. The phylogenetic relationships of archaic and modern human Y chromosomes differ from the population relationships inferred from the autosomal genomes and mirror mitochondrial DNA phylogenies, indicating replacement of both the mitochondrial and Y chromosomal gene pools in late Neanderthals. This replacement is plausible if the low effective population size of Neanderthals resulted in an increased genetic load in Neanderthals relative to modern humans.


Asunto(s)
Evolución Molecular , Rasgos de la Historia de Vida , Hombre de Neandertal/genética , Cromosoma Y/genética , Animales , Cromosomas Humanos Y/genética , ADN Antiguo , ADN Mitocondrial/genética , Humanos , Masculino , Hombre de Neandertal/clasificación , Filogenia
12.
Nanomaterials (Basel) ; 10(6)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580474

RESUMEN

The preparation of hybrid polymeric systems based on carbon derivatives with a cationic polymer is described. The polymer used is a copolymer of a quaternizable methacrylic monomer with another dopamine-based monomer capable of anchoring to carbon compounds. Graphene oxide and graphene as well as hybrid polymeric systems were widely characterized by infrared, Raman and photoemission X-ray spectroscopies, electron scanning microscopy, zeta potential and thermal degradation. These allowed confirming the attachment of copolymer onto carbonaceous materials. Besides, the antimicrobial activity of hybrid polymeric systems was tested against Gram positive Staphylococcus aureus and Staphylococcus epidermidis and Gram negative Escherichia coli and Pseudomonas aeruginosa bacteria. The results showed the antibacterial character of these hybrid systems.

13.
Sci Total Environ ; 741: 140175, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32570065

RESUMEN

Pristine ɣ-Fe2O3 nanoparticles, called surface active maghemite nanoparticles (SAMNs) display unprecedented colloidal stability and specific binding properties. Herein, the interactions of SAMNs with AsV and AsIII as surface molecular probes were comparatively studied. Thermodynamic and kinetic characterizations, along with chemical and structural analysis of SAMN@As complexes, evidenced two distinct binding modalities. Arsenite, emerged as an elective and specific ligand for SAMNs, whereas arsenate adsorption was more labile, pH dependent and ruled by different binding possibilities. In particular, AsIII oxyacid exclusively interacts through inner-sphere coordination occupying available surface crystal positions resembling a key-lock fitting, while AsV leads to both outer-sphere and inner-sphere complexes. Noteworthy, discrimination between AsV and AsIII was never reported for nanostructured maghemite evidencing the importance of synthetic route on surface properties of the nanomaterial. The present report, besides enriching the chemistry of nanosized iron oxides, suggests SAMNs application for the remediation of water contaminated by AsIII, the most threatening As species in water.

14.
Nanoscale ; 12(12): 6664-6672, 2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32080702

RESUMEN

Luminescent solar concentrators (LSCs) are light-management devices and are used for harvesting and concentrating solar light from a large area to their edges. Being semitransparent devices, LSCs show great promise for future utilization in glass walls of urban buildings as environmentally friendly photovoltaic power plants. The development of cheap and eco-safe materials, the extension of the LSC operation range, and the enhancement of the optical efficiency are the key challenges, which need to be solved in order to transform energetically passive buildings into self-sustainable units. Herein, a large area (64 cm2) tandem LSC fabricated using entirely eco-friendly highly emissive blue, green, and red carbon dots is demonstrated, with an internal optical quantum efficiency of 23.6% and an external optical quantum efficiency of 2.3%, while maintaining a high transparency across the visible spectrum. This opens up a new direction for the application of carbon dots in advanced solar light harvesting technologies.

15.
Nanoscale ; 11(44): 21364-21375, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31674615

RESUMEN

There is an urgent need for a simple and up-scalable method for the preparation of supercapacitor electrode materials due to increasing global energy consumption worldwide. We have discovered that fluorographene exhibits great potential for the development of new kinds of supercapacitors aimed at practical applications. We have shown that time control of isothermal reduction of fluorographite at 450 °C under a hydrogen atmosphere led to the fine-tuning of fluorine content and electronic properties of the resulting fluorographene derivatives. Charge transfer resistances (Rct) of the thermally reduced fluorographenes (TRFGs) were decreased with respect to the pristine fluorographene; however, the Rctvs. time-of-reduction plot showed a v-shaped profile. The specific capacitance vs. time-of-reduction of TRFG followed the v-shaped trend, which could be the result of the decreasing content of sp3 carbons and increasing content of structural defects. An optimized material exhibited values of specific capacitance up to 539 F g-1 recorded at a current density of 0.25 A g-1 and excellent cycling durability with 100% specific capacitance retention after 1500 cycles in a three-electrode configuration and 96.7% of specific capacitance after 30 000 cycles in a two-electrode setup.

16.
Phys Chem Chem Phys ; 21(14): 7313-7320, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30895998

RESUMEN

Superconductivity in polycrystalline and thin-film MgB2 is strongly affected by the termination of its surface, but a reliable determination of the surface termination is still a challenging task of surface chemistry. Here, the surface properties of superconducting MgB2 were investigated using a combination of inverse gas chromatography and van der Waals corrected density functional theory calculations. The dispersive surface energy was measured as a function of the surface coverage and its value (58 mJ m-2 to 48 mJ m-2) was verified by high-level non-local EXX + RPA calculations, which predicted that the dispersive contribution to the cleavage energy was 56 mJ m-2. The isosteric adsorption enthalpies of cyclohexane, dioxane, acetone and acetonitrile molecules were measured on an MgB2 sample and compared to the DFT calculated enthalpies for the Mg-terminated MgB2, B-terminated MgB2 and MgO(001) surfaces. The close agreement between theory and experiment for the Mg-terminated surface suggested that the magnesium termination is the dominant surface phase of MgB2. Thus, combining inverse gas chromatography experiments with theoretical calculations may provide information about the surface termination.

17.
Proc Natl Acad Sci U S A ; 116(5): 1639-1644, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30647110

RESUMEN

Several studies have suggested that introgressed Neandertal DNA was subjected to negative selection in modern humans. A striking observation in support of this is an apparent monotonic decline in Neandertal ancestry observed in modern humans in Europe over the past 45,000 years. Here, we show that this decline is an artifact likely caused by gene flow between modern human populations, which is not taken into account by statistics previously used to estimate Neandertal ancestry. When we apply a statistic that avoids assumptions about modern human demography by taking advantage of two high-coverage Neandertal genomes, we find no evidence for a change in Neandertal ancestry in Europe over the past 45,000 years. We use whole-genome simulations of selection and introgression to investigate a wide range of model parameters and find that negative selection is not expected to cause a significant long-term decline in genome-wide Neandertal ancestry. Nevertheless, these models recapitulate previously observed signals of selection against Neandertal alleles, in particular the depletion of Neandertal ancestry in conserved genomic regions. Surprisingly, we find that this depletion is strongest in regulatory and conserved noncoding regions and in the most conserved portion of protein-coding sequences.


Asunto(s)
Hombre de Neandertal/genética , Selección Genética/genética , Alelos , Animales , Secuencia Conservada/genética , ADN/genética , Europa (Continente) , Evolución Molecular , Flujo Génico/genética , Humanos , ARN no Traducido/genética , Población Blanca/genética
18.
Bioinformatics ; 35(17): 3194-3195, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668635

RESUMEN

SUMMARY: We present a new R package admixr, which provides a convenient interface for performing reproducible population genetic analyses (f3, D, f4, f4-ratio, qpWave and qpAdm), as implemented by command-line programs in the ADMIXTOOLS software suite. In a traditional ADMIXTOOLS workflow, the user must first generate a set of text configuration files tailored to each individual analysis, often using a combination of shell scripting and manual text editing. The non-tabular output files then need to be parsed to extract values of interest prior to further analyses. Our package simplifies this process by automating all low-level configuration and parsing steps, making analyses as simple as running a single R command. Furthermore, we provide a set of R functions for processing, filtering and manipulating datasets in the EIGENSTRAT format. By unifying all steps of the workflow under a single R framework, this package enables the automation of analytic pipelines, significantly improving the reproducibility of population genetic studies. AVAILABILITY AND IMPLEMENTATION: The source code of the R package is available under the MIT license. Installation instructions, reference manual and a tutorial can be found on the package website at https://bioinf.eva.mpg.de/admixr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Reproducibilidad de los Resultados , Flujo de Trabajo
19.
Nanoscale Adv ; 1(10): 4041-4051, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36132097

RESUMEN

We achieved sputter deposition of silver atoms onto liquid alcohols by injection of solvents into vacuum via a liquid microjet. Mixing silver atoms into ethanol by this method produced metallic silver nanoparticles. These had a broad, log-normal size distribution, with median size between 3.3 ± 1.4 nm and 2.0 ± 0.7 nm, depending on experiment geometry; and a broad plasmon absorption band centred around 450 nm. We also deposited silver atoms into a solution of colloidal silica nanoparticles, generating silver-decorated silica particles with consistent decoration of almost one silver particle to each silica sphere. The silver-silica mixture showed increased colloidal stability and yield of silver, along with a narrowed size distribution and a narrower plasmon band blue-shifted to 410 nm. Significant methanol loss of 1.65 × 10-7 mol MeOH per g per s from the mature silver-silica solutions suggests we have reproduced known silica supported silver catalysts. The excellent distribution of silver on each silica sphere shows this technique has potential to improve the distribution of catalytically active particles in supported catalysts.

20.
Phys Chem Chem Phys ; 20(48): 30247-30256, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30483690

RESUMEN

The kinetics and mechanism of ferrate(iv), (v) and (vi) transformations in water and in polar organic solvents (namely ethanol and tetrahydrofuran) have been investigated by the method of 57Fe Mössbauer spectroscopy of frozen solutions. Ethanol with a very limited amount of water under an inert atmosphere, significantly slows down the transformation reactions of ferrates(iv and v) and provides direct proof of the existence of intermediate states. Simultaneously, ethanol is oxidized to caboxylates in the close vicinity of the surface of ferrate crystallites as proven by X-ray photoelectron spectroscopy. On the contrary, any transformation of ferrate(vi) in pure ethanol (with a very limited amount of water) was not observed. Mössbauer spectroscopy of frozen solutions enabled us to experimentally identify and quantify intermediates of ferrate(iv) and ferrate(v) transformations for the first time. Sodium ferrate(iv) in its tetrahedral form, Na4FeO4, undergoes a two-step charge disproportionation to Fe(iii) and Fe(vi) via a Fe(v) intermediate without any evolution of oxygen in polar protic and aprotic solvents, specifically 2Fe(iv) → Fe(iii) + Fe(v), and Fe(iv) + Fe(v) → Fe(iii) + Fe(vi), i.e. in sum 3Fe(iv) → 2Fe(iii) + Fe(vi). Ferrate(v) (K3FeO4) transforms to Fe(iii) and Fe(vi) without any indication of the Fe(iv) intermediate within the detection limit of the method. In addition to a charge disproportionation reaction proceeding in polar liquids, 3Fe(v) → Fe(iii) + 2Fe(vi), a competitive reduction of Fe(v) directly to Fe(iii) accompanied by oxygen evolution takes place in water. Oxygen evolution was also measured for ferrate(iv and vi) transformations in water, but to a higher and a smaller extent compared to ferrate(v), respectively. The thermodynamics of the suggested ferrate(iv) and ferrate(v) transformation pathways was examined by DFT calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...